Whilst the debate among the space enthusiast community still rages about what the next target for human exploration should be those with the capability seem to have already made a decision: we’re going to Mars. NASA has committed to getting astronauts there some time around 2030 and SpaceX’s founder and CEO, Elon Musk, has long held the dream that he’d be retiring on Mars. There’s also the Mars One which, to my surprise, is still going and garnering attention worldwide even here in my home country. The lack of a return mission to the Moon does raise some questions about the technology that will be used as we don’t have any craft capable of going past low earth orbit, not since the Apollo program ended almost half a century ago.

Orion_with_ATV_SMNASA has been working on a new crew capsule for some time now, dubbed the Orion. Initially this was part of the planned 2020 mission to return to the Moon however the majority of that was scrapped in favour of going directly to Mars. The capsule and the revised launch system were retained however and will form the basis of NASA’s future manned space missions. However if the Moon is no longer the goal for this craft and it’s end goal will be long duration flight there’s a lot of testing that needs to be done before we send one of them to Mars. Interestingly NASA has gone for an incredibly ambitious mission to put the Orion’s long duration flight capabilities to the test: an asteroid capture and analysis mission.

There’s currently two mission profiles being considered, both of them seeming like something straight out of science fiction. The first (and I’ll guess least likely of the two) is a robotic craft will make its way to a large asteroid, break a chunk of it off and then bring it back into orbit around the moon. The second would be a straight up asteroid capture with the craft grabbing an asteroid in its entirety (it would be small, about 7m or so in diameter) and, again, putting it into lunar orbit. Then once the asteroid is in a stable orbit NASA will send crew to it in an Orion capsule to study it, testing out some of the long duration capabilities as well as other rudimentary space activities like EVAs.

Such a mission is actually quite feasible (at least the latter profile) from a technical perspective. Pretty much all the technology required to capture an asteroid of that size is available today and there’s already 6 candidate asteroids identified. The main issue I see with it is time as just getting to the asteroid is planned to take at least 4 years with another 2 to 6 required for it to make the trip back. That means if the mission were to launch today it could potentially take up to 2024 before it returns to us which doesn’t leave a lot of time for NASA to test out the Orion capsule on it, This could be sped up considerably by changing it’s launch profile to include a second stage rocket to boost it rather than relying on the ion thrusters to achieve escape velocity but that would come with additional expense. There’s also the possibility of foregoing the robotic part of this mission completely and just sending humans although that poses just as many challenges as going straight to mars.

I’m glad to see NASA making a return to missions like these, ones that truly push the envelop of humanity’s space capabilities. It’s going to be interesting to see how the mission develops as there’s lots of different variables that need to be sorted out, some that will change the mission dramatically. Still the thought of us being able to capture an asteroid, bring it into lunar orbit and then send humans to study it is just an incredible thing to think about and I truly hope NASA sees this one through to fruition.

 

About the Author

David Klemke

David is an avid gamer and technology enthusiast in Australia. He got his first taste for both of those passions when his father, a radio engineer from the University of Melbourne, gave him an old DOS box to play games on.

View All Articles