The need for organs for transplants has always outstripped demand and this has pushed the science in some pretty amazing directions. Indeed one of the most incredible advances is the ability to strip away host tissue from organs, leaving behind an organ scaffold, that we can then regrow with the recipient’s own cells. This drastically reduces the chance of rejection and hopefully avoids the patient having to take the harsh anti-rejection drugs. However such a process still relies on a donor organ which still leaves us with the supply problem to deal with. Whilst we’ve made some advances in creating parts of organs (some even done with biomedical 3D printers) growing a full organ has still proven elusive.

That is until recently.

SCIENCE MOUSEResearchers at the University of Edinburgh have, for the first time, managed to grow a full functioning organ within a mouse using only a single injection. The organ that they created was the thymus, an organ that plays a critical role in the production of T-cells. These cells are the ones that are responsible for hunting down cells in your body that are either showing abnormalities or signs of infection and then eradicating them. What’s so incredible about this recent achievement is that the functional thymus developed after the injection of modified cells, requiring none of the additional work that’s previously been associated with creating functional organs.

The process starts off with cells from a mouse embryo, which from what I can gather were likely to be embryonic stem cells, which were then genetically programmed to form into a type of cell that’s found in the thymus. These, along with supporting cells, were then injected into the mice and the resultant cells developed into a fully functioning thymus. Interestingly though this didn’t seem to be the outright goal of the program as the researchers themselves stated that the result was surprising. Indeed whilst it’s been theorized that stem cells could be used in this manner it was never thought to be as straight forward as this and with these results further research is definitely on the table.

Whilst this research is still many years away from being useful in human models it does pave the way for research into how far this typical method can be applied. The thymus is a relatively simple organ when compared to others in the body so the next steps will be to see if this same process can be used to replicate them. If say a liver or heart can be reproduced in this manner then this has the potential to completely solve the transplant organ supply issue, allowing patients (or a surrogate) to grow their own organs for transplants. There’s a lot of research to be done before that happens however but this latest advance is incredibly promising.

 

About the Author

David Klemke

David is an avid gamer and technology enthusiast in Australia. He got his first taste for both of those passions when his father, a radio engineer from the University of Melbourne, gave him an old DOS box to play games on.

View All Articles