Mars is by far the most studied planet that isn’t our own, having had 46 separate missions launched to it since the 1960s and is currently host to no less than 5 active missions both in orbit and on its surface. Those missions have taught us a lot about our red celestial sister, the most intriguing of which is that it was once not unlike Earth, covered in vast swaths of ocean which could potentially have been host to all sorts of life. Even more interesting is that while it’s little more than a barren desert that’s only notionally above vacuum it still contains water ice in non-trivial quantities, leading many to speculate that somewhere its liquid form must also exist. The process by which Mars transformed from a lush landscape like ours to the wasteland it is today is still shrouded in mystery and is something that MAVEN, NASA’s latest mission to Mars, is seeking to solve.

MAVEN OrbiterMAVEN successfully launched yesterday atop of an ATLAS V rocket and will spend the better part of a year transiting the distance between Earth and Mars. Its primary objective is to investigate the evolution of Mars’ atmosphere to try and ascertain the factors that influenced its demise. Since the current prevailing theory is that a cooling planetary core led to a loss of a protective magnetic field which then allowed the solar wind to slow strip away the atmosphere many of the instruments aboard the craft are geared towards measuring solar particles around Mars’ orbit. The rest of the instrumentation is focused on directly measuring Mars’ atmosphere which will then allow scientists to reconstruct a full picture of it and the influences working on it.

I believe this is also (and someone feel free to correct me on this) the reason for its slightly abnormal orbit for when it arrives at Mars. Instead of taking the usual approach of having a near circular orbit (like the Mars Reconnaissance Orbiter) it instead has a highly elliptical orbit with the closet approach being a mere 150KM above the surface whilst its furthest point is 6200KM out. This would allow the craft to get good measurements of the levels of solar particles as it gets closer to the surface and how that compares to it further out. Considering the orbital period will also only be 4.5 hours it would make for some rather exciting flybys if you were aboard that craft but then again that’s not an orbit you’d use if you had people on board.

The orbit also has the rather unfortunate effect of limiting one of MAVEN’s more long term capabilities: it’s link back to Earth. MAVEN has a 10Mbit/s link thanks to an updated Electra array which is almost twice as powerful as MRO’s. However due to the rather eccentric orbit it won’t be available as often which will limit the amount of data that can be passed back. This doesn’t just impact the satellite itself though as whilst the rovers on Mars can communicate directly to Earth it’s not a very fast connection, so most offload onto a local satellite for their more data hungry applications. Since it’s currently only an augment to the other fleet of satellites around Mars this isn’t too much of an issue although it could present some contention issues later on the track when the other satellites are retired.

The science that MAVEN will conduct on its planned 1 year mission will prove invaluable in determining just what happened to Mars’ atmosphere and, by extension, what the chances are of any life existing on its surface today. It will also provide infrastructure for future missions, allowing them to be more ambitious in the goals that they attempt to reach. For now though it’s 1 day into its long trip to our celestial sister, quietly awaiting the day when it can finally start fulfilling its purpose.

 

About the Author

David Klemke

David is an avid gamer and technology enthusiast in Australia. He got his first taste for both of those passions when his father, a radio engineer from the University of Melbourne, gave him an old DOS box to play games on.

View All Articles