With the amount of NVRAM that’s used these days the amount of innovation in the sector has been comparatively little. For the most part the advances have come from the traditional avenues, die shrinks and new gate technologies, with the biggest advance in 3D construction only happening last week. There’s been musings about other kinds of technology for a long time like memristors which had their first patent granted back in 2007 and were supposed to making their way into our hands late last year, but that never eventuated. However news comes today of a new memory startup that’s promising a lot of things and whilst they don’t say it directly it looks like they might be one of the first to market with memristor based products.

Crossbar-Simple-CMOS-Integration-080213

Crossbar is a new company that’s been working in stealth for some time on a new type of memory product which, surprisingly, isn’t anything particularly revolutionary. It’s called Resistive RAM (RRAM) and a little research shows that there’s been companies working on this idea as far back as 2009. It’s based around a fairly interesting phenomena whereby a dielectric, an electric insulator, can be made to conduct through the application of high voltage. This forms a filament of low resistance which can then be reset, breaking the connection, and then set again using another high voltage jolt. This idea lends itself well to applications in memory as the two states translate perfectly to binary and if the specifications are anything to go by the performance that will come out of them should be quite spectacular.

If this is sounding familiar then you’re probably already familiar with the idea of memristors. These are the 4th fundamental component of electronic circuits that were postulated back in 1971 by Leon Chua and were made real by HP in 2007. In a basic sense their resistance is a function of the current following through them and when the current is removed that resistance is remembered, hence their name. As you can see this describes the function of RRAM pretty well and there is a solid argument to be made that all RRAM technologies are in fact memristors. Thus whilst it’s pretty spectacular that a start up has managed to perfect this technology to the point of producing it on a production fab it’s actually technology that’s been brewing for quite some time and one that everyone in the tech world is excited about.

Crossbar’s secret sauce could likely come from their fabrication process as they claim that the way they create their substrate means that they should be able to stack them, much in the same way that Samsung can now do with their VNAND. Now this is exciting because previously HP alluded to the fact that memristor based storage could be made much more dense than NAND, several orders of magnitude more dense to be precise, and considering the density gains Samsung got with their 3D chips a layered memristor device’s storage capacity could be astronomical. Indeed Crossbar claims this much with up to 1TB for a standard chip that could be stacked multiple times, enabling terabytes on a single chip. That puts good old fashioned spinning rust disks on notice as they just couldn’t compete, even when it comes to archival storage. Of course the end price will be a big factor in this but that kind of storage potential could drive the cost per GB through the floor.

So the next couple months are going to be quite interesting as we have Samsung, the undisputed king of NAND, already in the throws of producing some of the most dense storage available with Crossbar (and multiple other companies) readying memristor technology for the masses. In the short term I give the advantage to Samsung as they’ve got the capital and global reach to get their products out to anyone that wants them. However if memristor based products can do even half of what they’re claimed to be capable of they could quickly start eating Samsung’s lunch and I can’t imagine it’d be too long before they either bought the biggest players in the field or developed the technology themselves. Regardless of how this all plays out the storage market is heading for a shake up, one that can’t come quick enough in my opinion.

 

About the Author

David Klemke

David is an avid gamer and technology enthusiast in Australia. He got his first taste for both of those passions when his father, a radio engineer from the University of Melbourne, gave him an old DOS box to play games on.

View All Articles