Thanks to our northern hemisphere counter-parts I’ve been privy to all sorts of interesting cold weather things from making instant snow to the ingenuity that people come up with when they’re snowed in. Here in Australia we do get the up on the other end of the spectrum quite often during summer however although that doesn’t really drive us to do much more than sit around a pool and drink copious amounts of beer. So you can imagine then that anything involving sub-zero temperatures is going to be somewhat intriguing to us, especially something as cool as this:
There’s nothing particularly complicated about what’s going on here but the demonstration is quite novel. What you’re seeing is the formation of ice crystals on the surface of a soap bubble which starts off slow but ramps up significantly as more crystals form. I think this is partially due to the way crystals form as they usually need a rough surface to attach to. This is how those instant ice videos work as the bottles don’t have any anchor points for the crystals to form but once you shake it up a bit you give them a surface to attach to.
There was one question that was left unanswered due to the video cutting off at the end however: whether or not it’d still float after it was frozen.
Now the bubble isn’t increasing in mass, it’s simply changing forms. There’s the possibility that some of the moisture from the air outside the bubble will condense onto the crystalline surface however I don’t think that’d change the mass by an appreciable amount. The density would also be going down as well thanks to water’s intriguing property of getting less dense as changes into ice. All those factors together would indicate that a frozen soap bubble would behave in much the same way as a regular one but I’d still like to see this hypothesis tested.
Although I do much prefer warmer climates, so this will have to be an exercise that’s left up to the reader.