My main PC at home is starting to get a little long in the tooth, having been ordered back in the middle of 2008 and only receiving upgrades of a graphics card and a hard drive since then. Like all PCs I’ve had it suffered a myriad of problems that I just usually put up with until I stumbled across a work around, but I think the vast majority of them can be traced to a faulty motherboard (Can’t put more than 4GB of RAM in it or it won’t post) and a batch of faulty hard drives (that would randomly park the heads causing it to freeze). At the time I had the wonderful idea of buying the absolute latest so I could upgrade cheaply for the next few years, but thanks to the consolization of games I found that wasn’t really necessary.
To be honest it’s not even really necessary now either, with all the latest games still running at full resolution and most at high settings to boot. I am starting to lag on the technology front however with my graphics card not supporting DirectX 11 and everything but the RAM being 2 generations behind (yes, I have a Core 2 Duo). So I took it upon myself to build a rig that combined the best performance available of the day rather than trying to focus on future compatibility. Luckily for me it looks like those two are coinciding.
Just because like any good geek I love talking shop when it comes to building new PCs here are the specs of the potential beast in making:
- Intel Core i7 2600K
- Asrock P67 Motherboard
- Corsair Vengeance 1600MHz DDR3 16GB
- Radeon HD6950
- 4 x 1TB Seagate HDD in RAID 10
- OCZ Vertex 3 120GB
The first couple choices I made for this rig were easy. Hands down the best performance out there is with the new Sandy Bridge i7 chips with the 2600K being the top of the lot thanks to its unlocked multiplier and hyperthreading, which chips below the 2600 lack. The choice of graphics cards was a little harder as whilst the Radeon comes out leagues ahead on a price to performance ratio the NVIDIA cards still had a slight performance lead overall, but hardly enough to justify the price. Knowing that I wanted to take advantage of the new SATA 6Gbps range of drives that were coming out my motherboard choice was almost made for me as the Asrock P67 seems to be one of the few that has more than 4 of the ports available (it has 6, in fact).
The choice of SSD however, whilst extremely easy at the time, became more complicated recently.
You see back in the initial pre-production review round the OCZ Vertex 3 came out shooting, blasting away all the competition in a seemingly unfair comparison to its predecessors. I was instantly sold especially considering the price was looking to be quite reasonable, around the $300 mark for a 120GB drive. Sure I could opt for the bigger drive and dump my most frequently played games on it but in reality a RAID10 array of SATA 6Gbps drives should be close enough without having to overspend on the SSD. Like any pre-production reviews I made sure to keep my ear to the ground just in case something changed once they started churning them out.
Of course, something did.
The first production review that grabbed my attention was from AnandTech, renowned for their deep understanding of SSDs and producing honest and accurate reviews. The results for my drive size of choice, the 120GB, were decidedly mixed on a few levels with it falling down in several places where the 240GB version didn’t suffer any such problems. Another review confirmed the figures were in the right ballpark although unfortunately lacking a comparison to the 240GB version. The reasons behind the performance discrepancies are simple, whilst functionally the same drives the differences come from the number of NAND chips used to create the drive. The 240GB version has double the amount of the 120GB version which allows for higher throughput and additionally grants the drive a larger scratch space that it can use to optimize its performance¹.
So of course I started to rethink my position. The main reason for getting a real SSD over something like the PCIe bound RevoDrive was that I could use it down the line as a jumbo flash drive if I wanted to and I wouldn’t have to sacrifice one of my PCIe lanes to use it. The obvious competitor to the OCZ Vertex 3 would be something like the Intel 510 SSD but the reviews haven’t been very kind to this device, putting it barely in competition with previous generation devices.
After considering all my options I think I’ll still end up going with the OCZ Vertex 3 at the 120GB size. Whilst it might not be the kind of performance in every category it does provide tremendous value when compared to a lot of other SSDs and it will be in another league when compared to my current spinning rust hard drive. Once I get around to putting this new rig together you can rest assured I’ll put the whole thing through its paces, if at the very least to see how the OCZ Vertex 3 stacks up against the numbers that have already been presented.
¹Ever wondered why some SSDs are odd sizes? They are in fact good old fashioned binary sizes (128GB and 256GB respectively) however the drive reserves a portion of that (8GB and 16GB) to use as scratch space to write and optimize data before committing it. Some drives also use it as a buffer for when flash cells become unwritable (flash cells don’t usually die, you just can’t write to them anymore) so that the drive’s capacity doesn’t degrade.