We humans aren’t great power sources, despite what The Matrix might have you believe, with our sustained output being roughly equivalent to about one quarter of a horsepower (maybe half if you’re an endurance runner or cyclist). This works pretty well for our natural form of locomotion as we don’t need that much to move ourselves around but it becomes something of an issue when we start using more exotic forms of transportation. Cycling and rowing can be fairly efficient forms of transportation when all you have is human power however once you want to take to the skies things start to get a little hairy as the power required for sustained flight is usually well above what your typical human can provide.

That’s not to say we haven’t tried, far from it. Attempts to create a purely human powered craft go as far back as 1923, a mere 20 years after the first powered, heavier than air flight took place at Kitty Hawk. Most of these experiments could only be considered experimental in nature as the distances they could cover were rarely more than a few meters and most of them required a powered assist in order to take off, thereby invalidating them as being truly human powered. The late 1970s however saw the creation of the Gossamer Condor and Albatross, both fully human powered craft that took the Kremer Prize. However probably the most famous of all the human powered craft comes in the form of the MIT’s Daedalus a human powered craft that flew from the Isle of Crete to Santorini, a distance of 115KMs that was completed in just under 4 hours.

You’d then think that a human powered helicopter wouldn’t be too far behind however the design principles behind a helicopter present a much larger challenge than those of a traditional aeroplane. Instead of pushing the aerofoil via the use of a propeller to generate lift a helicopter instead whips the aerofoil itself through the air. This, traditionally, requires a lot more effort in order to generate the same amount of lift and the tricks used for the current generation of human powered craft (light materials and giant wings) present even greater challenges when those wings need to be under rotational stress. We do have several decades of aeronautical engineering advances since then however and one team has finally managed to create a human powered helicopter, one that can fly for just over a minute:

It’s an incredible device sporting 4 rotors that each have a diameter of 20m, each of which is larger than the individual rotors of the mighty Boeing Chinook. That incredible size is also coupled with a weight that seems almost impossible for a craft of that size, weighing in at a paltry 55kg. One thing to note however is that whilst this does count as a human powered helicopter the height it attained, some 3 meters or so, means that this craft was still operating well within the ground effect which means that it’s effectively working with a much better lift profile than would be expected once it reached a higher altitude. Some would then not classify this as a helicopter and instead call it a ground effect craft, which I’d agree with in some sense, but it’s still a pretty amazing feat of engineering despite the fact that it hasn’t left ground effect yet.

It’s really quite amazing to see how a combination of engineering and human power can create things like this which were the stuff of fantasy not too long ago. Sure it might not have any practical uses right now but the technology they developed will definitely flow down to other lightweight craft, further improving their flight capabilities and characteristics. We might never all have our own pedal powered aircraft but it still remains a valuable engineering challenge, much like the solar car races held here in Australia. I can’t wait to see what they develop next as there’s already been implementations of other exotic aircraft like the human powered ornithopter so others can’t be that far behind.

About the Author

David Klemke

David is an avid gamer and technology enthusiast in Australia. He got his first taste for both of those passions when his father, a radio engineer from the University of Melbourne, gave him an old DOS box to play games on.

View All Articles